Surge protection for LED mast lights
LED mast lights for street, walkway and open space lighting are mounted at light point heights of several metres to ensure a large field of illumination. This, however, is only possible if the luminous flux of the light source is sufficiently high which is no problem for today’s highly efficient LEDs. Their long service life, a low temperature sensitivity and individual settings of different scenes make them cost-effective and environment-friendly.

LED mast lights stand out due to the following special characteristics:

- High luminous efficacy up to 110 lm/W
- The light distribution can be easily adapted to the relevant illumination task by using different lenses
- Different light colours / colour temperatures
- LEDs have a service life between 50,000 and 100,000 h depending on the operating current
- The temperature-dependent luminous flux of the LEDs varies only slightly and is e.g. 115 % at -30 °C and 95 % at 40 °C
- Individual scenes (e.g. luminous flux, operating times, dusk dependence) can be pre-set via the LED drivers
- In some cases, individual scenes can be set via a 1–10 V or DALI interface
- LEDs are ideally suited for safety lighting systems due to their high luminous flux without switch-on delay

In practice, different LED mast lights are used. All fixture bodies are typically made of metal independent of whether LED mast lights with “double or reinforced insulation” (previously class II) or “automatic disconnection of supply” (previously class I) as per IEC 60364-4-41 (HD 60364-4-41) are used. The metal housing of the LED mast light dissipates the resulting heat loss over a large area.

The mast frequently consists of metal and the supply voltage flows through a buried cable into the mast. A terminal compartment that can be opened using tools is situated in the lower section of small masts. A rubber hose which is relieved of any strain on both ends connects the terminal compartment with the mast light. This terminal compartment houses the terminals and the overcurrent protective device. Large masts are fitted with a supply distributor and, if this distributor feeds the mains and equivalent power supply, it is physically divided according to the relevant normative requirements.

If LED mast lights or PVC masts are used, electrostatic charge must be observed. This, however, will not be described here.

If you compare the surge-related replacement costs of previously used mast lights with high-pressure lamps with the replacement costs of today’s LED mast lights, it can be seen that the illuminant, ignition device and inductive control unit of the previously used high-pressure lamps are damaged while the LED drivers, their parameterisation devices and the LEDs of today’s LED mast lights entail high costs. Although amortisation is to be expected over a transparent time frame due to the long service life of LED mast lights, the question arises whether the manufacturer accepts the warranty for the overall system (LED drivers and LEDs) since surges negatively affect the system-specific service life. The lighting industry has already responded to this with a higher dielectric strength of the LED drivers and an impulse current withstand capability of 2 kA and a dielectric strength of 4 kV for new LED mast lights, however, the impulse currents and surges occurring in the mains can exceed these values many times over. It has to be particularly observed that the dielectric strengths L to N considerably differ from that of L/N to PE.

A metal mast in conjunction with a metal LED mast light minimises the probability of field-based injection. Consequently, only surges extending over the cable network must be considered. To this end, a surge arrester can be installed in the terminal compartment / distributor of the mast (Figure 9.15.1).

![Surge arrester installed in the terminal compartment / distributor of the metal mast for protecting the metal LED mast light from conducted surges caused by distant atmospheric events and switching operations](image-url)
This has the advantage that the surge arrester can be tested without forklift.

If, however, a metal LED mast light and its metal mast do not form a closed system since the feeder cable of the LED mast light was placed in free space at the mast exit point and several LED mast lights are located on a mast arm, a surge arrester must be installed next to the LED mast light (Figure 9.15.2). If the probability of surges is expected to be low, no additional surge protective devices have to be installed. The relevant protection measure used for the LED mast light must be considered when installing a surge arrester in the LED mast light. Surge arresters with basic insulation (insulation of dangerous live parts as basic protection), for example, must not interfere with the “double or reinforced insulation” (previously class II) of the LED mast light according to IEC 60364-4-41 (HD 60364-4-41).

It is advisable to use DEHNcord to limit average interference ($I_n = 5 \, \text{kA}$). DEHNguard modular DG M TT 2P 275 should be installed to limit high interference ($I_n = 20 \, \text{kA}$).

If lightning strikes the metal mast, the mast shields the cable installed in it and the application-optimised combined arrester located at the base of the mast discharges the lightning current (total current up to 50 kA (10/350 μs)) across the distribution network and protects the LED mast light by means of its low voltage protection level (Figure 9.15.3). This always requires a vertical or horizontal earth electrode and an additional surge arrester must be installed on the LED mast light according to Figure 9.15.2, depending on the cable routing. Basically, the described protection of the LED mast light by means of a combined arrester must be used if a risk analysis requires a higher protection goal than a surge arrester can achieve. This is the case with extremely high masts with large-area LED mast lights on the mast arms (e.g. large parking lots, stadiums, etc.) and LED mast lights that are fed by a building with a lightning protection system since the lightning current is discharged via the lightning equipotential bonding system to the LED mast light.
In case of new installations where the masts and cables have not been installed yet, a bare earthing conductor is to be installed above the cable route.

If lightning hits the mast (not the mast light itself) or the ground, the earthing conductor assumes the function of the required earth electrode and linearises the potential drop, thus preventing flashover to the cable (Figures 9.15.4 and 9.15.5).